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Study Program: Cybernetics and Robotics

Specialization: Cybernetics and Robotics

14th of August 2020





MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

492264Personal ID number:Śmiałek AdamStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Simulation and control toolkit for small satellite projects

Master’s thesis title in Czech:

Programovy balik pro simulaci a navrh rizeni malych satelitu

Guidelines:
The goal of the project is to propose, implement and demonstrate value of a software framework supporting teams building
small satellites - typically CubeSat student projects - during the initial phases of conceptual design, mission planning, and
selection and sizing of components. In relation to requirements coming from the expected navigation and flight control
functionalities.
1. Make a review of existing related tools. Both from the large satellite business, and the small satellite community. Present
a comparative analysis of strengths and weaknesses of existing solutions.
2. Based on the review, prepare a study and the software concept proposal showing specifically the need for this work
and expected compatibility of the toolkit with relevant other packages.
3. Propose and implement essential data structures and procedures of the toolkit. Focus on the aspects of conceptual
design, mission planning, selection and sizing of components, simulation, design and validation of control laws for ADCS
(attitude determination and control system).
4. Demonstrate usefulness of the toolkit on a case study, inspired by selected previous small satellite projects - either your
own or described in literature.

Bibliography / sources:
[1] Bryson Jr., Control of Spacecraft and Aircraft, Princeton University Press, 1994.
[2] Blakelock, Automatic Control of Aircraft and Missiles, Wiley, 1991.

Name and workplace of master’s thesis supervisor:

doc. Ing. Martin Hromčík, Ph.D., Department of Control Engineering, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 14.08.2020Date of master’s thesis assignment: 13.02.2020

Assignment valid until:
by the end of winter semester 2021/2022

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
doc. Ing. Martin Hromčík, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1



III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1



Declaration
I declare that the presented work was developed independently and that I have
listed all sources of information used within it in accordance with the methodical
instructions for observing the ethical principles in the preparation of university
theses.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Place, date Signature





Abstract
Spacecraft project management calls for division of project lifetime into phases,
with specific goals to be fulfilled at the end of each phase. During first few phases
a Preliminary Design Review (PDR) has to be conducted, after which top-level
hardware design is not to be changed. This thesis describes a process of creating
and demonstrates a software framework supporting teams building small satellites
- typically CubeSat student projects - during initial phases of conceptual design,
mission planning, and selection and sizing of hardware components. The scope
of the thesis covers review of available tools for satellite mission and control sys-
tem design, then it proposes a self-made MATLAB/Simulink toolbox - Spacecraft
Control Architecture Rapid Simulator (SCARS) Toolbox, as a open source tool
with gentle learning curve and ease of reverse engineering approach. In further
parts of the thesis examples of usage are provided, and conclusions and descrip-
tions of problems are presented. In the end, this thesis should not only serve as a
description of SCARS toolbox, but also as an insight into the task of building a
small satellite simulation.

Keywords: spacecraft, satellite, AOCS, ADCS, control design, MATLAB,
Simulink, toolbox, software, prototyping





Acknowledgement
I would like to give my thanks to Dr. Martin Hromč́ık, my supervisor from De-
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1 Introduction

The idea to create a simulation and control toolkit for small satellite projects was
a byproduct of work done on IRISC project by the author of this thesis. IRISC,
or ”InfraRed Imaging of astronomical targets with a Stabilized Camera”, was a
project realized as a part of Rocket and Balloon Experiments for University Stu-
dents programme (REXUS/BEXUS) programme. The goal of the IRISC experi-
ment was to obtain images in the Near-infrared (NIR) spectrum from astronomical
targets. Possible targets included the Andromeda Galaxy, Pinwheel Galaxy, Iris
Nebula, Eagle Nebula and Starfish Cluster. The images were obtained using a
highly stabilized telescope with NIR camera mounted on a REXUS/BEXUS bal-
loon. Author’s responsibility covered the design of the control subsystem of the
experiment. The stabilization was achieved by a gimbal-like system, to obtain
high quality images while being on a moving platform [23]. The design of the con-
trol system was based on already existing models. Nevertheless, students with
lack of previous practical experience in that field regarded it as a complex task.
This has proven to be especially challenging during early stages of experiment
design.

The process of effective space-related project management - from the conception
of the idea, through production, to disposal - features high costs and often var-
ious unpredictable risks. Due to aforementioned problems, a project life cycle is
usually divided into distinct phases, allowing introduction of conducting prod-
uct reviews within rigid time-frames. An example of such workflow, adopted by
most major agencies such as ESA [2] and NASA [3], is a division of the project life
cycle into phases, as presented on Figure 1.1. While the design of a project is
often an iterative process, the phases and reviews that conclude them exist as a
checkpoints, after which the design of the project is to be unchanged, on a level
of details progressing as phases do. For example, Phase B is usually ended by
the Preliminary Design Review (PDR). In the case of a spacecraft, for the PDR,
a major architecture parameters have to be defined, such as volume and weight
ramifications, top-level designs of solutions for major requirements need to be
presented - for a practical example: for high-resolution Earth observation mission
the type of the actuators which fulfills precision requirements has to be chosen.

Taking the experience of how challenging and time-consuming was the process of
learning how to produce a reliable simulation of IRISC control system and the
knowledge of significance of preliminary design, author decided to produce and
publish a simulation that is a useful for purposes of initial spacecraft design and
for beginner engineers to learn how to build a reliable simulation.
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Figure 1.1: Typical space project phases and its life cycle [1]

1.1 Scope

The thesis covers the process of development of the toolbox for rapid prototyp-
ing of satellite’s control systems. Chapter 1 describes the aim of this work and
discusses the topic of prototyping tools. Chapter 2 goes into details about the
architecture, the features and methods of implementation of a toolbox created
to fulfil the aims of the thesis - the Spacecraft Control Architecture Rapid Sim-
ulator (SCARS) Toolbox. In addition it includes the description of methods of
connecting SCARS with various visualization tools. Chapter 3 explains the doc-
umentation and usage of SCARS, while in Chapter 4 contains examples of real
life applications of the toolbox. Finally, Chapter 5 discusses the conclusions from
the development process and the possibilities for improvements of SCARS.

1.2 Aim

The aim of this thesis work is to build and provide a ready to use open source
product - a toolbox for small and low budget satellite projects. The toolbox
features allow conducting initial design of spacecraft’s Attitude Determination and

15



Control System (ADCS), which means that is provides tools for, i.a. simulation of
spacecraft orbit, testing the feasibility of various actuation methods and testing
the effectiveness of different control algorithms in given use cases. That software
would then allow smaller and inexperienced teams of spacecraft designers to better
prepare for design milestones like PDR, when there is not enough time to create
a full simulation of their spacecraft ADCS subsystems. Besides the toolbox being
a tool for practical use, the thesis also serves as as a review of available solutions,
so it can be used by future control engineers as a learning material. The idea is
that some parts of the proposed model cab be removed from the model while the
students, for learning purposes, are tasked with designing a substitution.

For the purposes of later evaluation of how the solutions proposed in this thesis
fulfil the goals stated in the preceding paragraph, a following list of objectives was
compiled:

� Conduct a review of existing tools for preliminary spacecraft de-
sign, focusing on mission planning and Attitude and Orbit Control Systems
(AOCS) subsystem;

� Create a spacecraft dynamics and AOCS model, to be used with
minimal set-up;

� Assemble a library of models, to be used by other beginner control
engineers;

� Provide a documentation of the toolbox, explaining not only the pur-
pose and operating principles of individual parts, but the process of using
the toolbox to conduct a preliminary design of spacecraft AOCS subsystem;

� Share the toolbox to be available online, with principles of open-source
software in mind.

Furthermore, the objectives that are set for the design of the toolbox itself are
described in Section 2.1.

1.3 Already existing tools

The idea for a toolbox for spacecraft mission design and AOCS simulation is not
a novelty. Various solutions are available, ranging from very robust commercial
software packages to open-source implementations of individual features for use
as a part of MATLAB framework.

The aim of this section is to prove that despite the fact that the solutions for
spacecraft prototyping are available, the need for open-source, easy-to-sue and
modify toolbox still remains. Below a list of selected software solutions that fit
the most objectives stated in Section 1.2 is stated, with explanation on the details,
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their features and the features which they lack and that discussed toolbox should
have.

1.3.1 MATLAB CubeSat Simulation Library

CubeSat Simulation Library is a part of Aerospace Blocks created by MathWorks
Aerospace Products Team. This library provides tool for modeling motion and
dynamics of CubeSats and nanosatellites. It provides the most basic features, e.g.
the simulation of pre-set attitude scenarios, basic actuators and sensors models
and integration with MATLAB’s Virtual World visualization tools.

Figure 1.2: Top-level view of the example project of the MATLAB CubeSat Simulation
Library

This library, while conceptually most similar to the SCARS, lacks some function-
alities. For example, for actuators, it provides only general models for perfect and
second-order actuators. In SCARS, the actuators are full models, which allows
not only reducing the number of layers of abstraction between the user and the
simulation, but also for tasks like calculation of energy expended by the actua-
tor. Moreover, this toolbox is sparsely documented - while most functionalities
are described within their Simulink block masks, there is no comprehensive guide
about how to use them in own models [16].
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1.3.2 PrincetonSATELLITE Spacecraft Control Toolbox

Figure 1.3: PrincetonSATELLITE Systems logo [22]

PrincetonSATELLITE Spacecraft Control Toolbox is a commercial solution for
building spacecraft Simulations. It contains over two thousand functions for atti-
tude and orbit dynamics, simulation, estimation, analysis and design. This is the
most robust and comprehensive toolbox available, includes online API, accessible
documentation and additional modules for unique applications like formation fly-
ing, fusion propulsion or solar sails. The toolbox is very robust, allowing the user
to conduct long term simulations, but is also useful for short term simulations,
like maneuver analysis and launch simulation. PrincetonSATELLITE Toolbox is
a versatile and comprehensive tool and would be the best choice for most use-
cases, yet it is a paid solution and even the cheapest option - CubeSat Edition -
may be out of price range for smaller teams [17].

1.3.3 PROPAT Toolbox

PROPAT is a small set of functions in Matlab to simulate and propagate orbit
and attitude of an Earth’s satellite, developed by the single person as an open-
source toolbox. Several functions allow to transform between orbit and attitude
coordinates and for propagation or rigid body attitude. PROPAT contains only
MATLAB scripts, which while useful and can be used as a part of the simulation,
do not combine into a model of a whole spacecraft’s ADCS subsystem [24].

1.3.4 GAST Toolbox

The GAST toolbox is the result of the consolidation of several toolboxes available
in Guidance, Navigation, and Control Systems Section (TEC-ECN) of European
Space Research and Technology Centre (ESTEC), such as the AOCS Toolbox, the
SpaceLAB library, the ViSiLib library, the ATPE simulator, and the PAV simu-
lator. In addition to consolidating these toolboxes, new models were developed
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for the GAST toolbox according to the needs of the section. Figure 1.4 shows a
pictorial representation of the consolidation of the toolboxes of TEC-ECN. This
software was developed in TEC-ECN in 2008, but since it is a product of European
Space Agency (ESA), it is not available for wider audience [25].

Figure 1.4: Representation of the consolidation of TEC-ECN toolboxes

1.3.5 User-created modules available on MathWorks MAT-
LAB Central

MATLAB is one of the most popular scripting language between engineers, and
along with Simulink package it provides tools helpful for simulating mechanical
systems. Therefore, numerous modules and packages created by the users can be
found online.

MATLAB Central is a network for asking questions about MATLAB software,
discussing solutions and sharing MATLAB and Simulink solutions and files [26].
On a subsection called File Exchange many files are available to use within MAT-
LAB framework, some of them relevant to spacecraft design. The most notable
examples are listed below.
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SAT-LAB
SAT-LAB is a MATLAB-based Graphical User Interface (GUI), developed for
simulating and visualizing satellite orbits. The primary purpose of SAT-LAB is
to provide a software with a user-friendly interface that can be used for both
academic and scientific purposes. While a useful tool, it is only suitable for initial
mission planning [27].

Satellite Orbit Modeling
A collection of MATLAB scripts used for modelling of satellite’s perturbed motion
with special perturbations approach. Despite being very robust, as it can be
applied to any problem in celestial mechanics, this module is useful for orbit
modeling, not AOCS system design [28].

Smart Nanosatellite Attitude Propagator (SNAP)
The Smart Nanosatellite Attitude Propagator is an attitude propagator for satel-
lites that can be used to analyze the environmental torques affecting a satellite and
to design and analyze passive attitude stabilization techniques, such as Passive
Magnetic Stabilization, Gravity Gradient Stabilization and Aerodynamic stabi-
lization. This model is the most relevant one for the scope of this thesis, but it
lacks possibility to model active attitude stabilization techniques [29].

Satellite Orbits: Models, Methods and Applications
Rather than spacecraft or orbit model, it is a collection of exercises for book
Satellite Orbits: Models, Methods and Applications. As educational means, the
exercises are interesting an refer at least partially to the problem of control system
design - mainly GPS sensor. Yet this is not a toolbox by any means [30].

Apollo 11 Moon Landing - 50th Anniversary Model
This example shows how the engineers who worked on the Apollo Lunar Module
digital autopilot design could have used Simulink, Stateflow, Aerospace Blockset
and Simulink 3D Animation if they had been available in 1961. Although it is a
very notable example of how MATLAB software family can be used to simulate a
whole mission, to use it for either own spacecraft or educational purposes would
require much more reverse engineering and modifications than creating a new
model [31].
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1.3.6 Overview

To summarize, software which helps spacecraft control engineers definitely is avail-
able. Yet, there is no solution which would have all the requirements that the
product of this thesis tries to fulfil. The list of features that could be expected
from a tool discussed in Section 1.2 is presented in Table 1.1, with comparison of
their inclusion in the examined software.

Feature

MATLAB
CubeSat

Simulation
Library

Princeton-
SATELLITE
Spacecraft

Control
Toolbox

PROPAT
Toolbox

GAST
Toolbox

Smart
Nanosatellite

Attitude
Propagator

(SNAP)

Orbit
propagation

Yes Yes Yes Yes Yes

Mission
planing

No Yes Partial No No

Actuators
and sensors

model
No Yes No Yes

Only permanent
magnets

Sensor fusion No Yes No Yes No

Control
algorithms

Partially Yes No Yes No

Environment
simulation

No Partial No Yes Yes

Parts
database

No No No Yes No

Availability
With MATLAB

Aerospace

Blockset

Fully
commercial

Free online Not available MATLAB File

Documenta-
tion

available
Partial Yes Yes Partial No

Open source Partially No Yes No
Yes, apart from

MATLAB back

end

Table 1.1: Comparison of features included in various software
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2 Spacecraft Control
Architecture Rapid Simulator
(SCARS) Toolbox

This chapter consists of description of the toolbox designed as a part of this
thesis work. After the following introduction, in Sections 2.1, 2.2 and 2.3 the
objectives of the toolbox and its high level structures are described. After that,
one finds theoretical description of satellite mechanics and coordinated systems,
with following descriptions of theoretical principles of each major component of
the toolbox and their implementation in MATLAB and Simulink software. At the
end, methods of visualization of acquired simulations are discussed.

To fulfill the main objective of this thesis, that is to provide the community of
beginner control engineers with a satellite control system prototyping toolbox,
a self-made solution is proposed. This chapter provides the insight into the ar-
chitecture of SCARS Toolbox, a software framework created for purposes of this
thesis in MATLAB and Simulink. First the main objectives of that solution are
stated, then architecture of SCARS is described, to give the initial description of
how the toolbox can be used. In following sections the principles of operation of
each major part of the toolbox, and how they were implemented, are presented.

The inputs of SCARS Toolbox - whether used as a parts library and integrated into
own project, or as ready-made modular simulation - are parameters of spacecraft
hardware, for example such as the size of the satellite, thrusters operational range,
and initial mission parameters like time, Keplerian elements or initial body rates.
The outputs of the toolbox are performances of each part and simulated behavior
of the whole spacecraft, allowing the user to easily test different designs for their
satellites.

2.1 Objectives

The toolbox by itself covers the first two objectives of the the thesis. The following
listing further specifies what should be expected of the end product and what
features users should be able to find in SCARS Toolbox:

� A model of orbital dynamics of Earth orbiting satellite;
� Models of most common satellite actuators and sensors and parametrize

them, so that the actual hardware can be reproduced in simulation using
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values from datasheets;
� Modeled sources of environmental forces and torques, including most sources

most relevant for small satellites;
� Several most basic control methods;
� Simulink Custom Library, with all models masked for quick set up;
� Methods of conducting preliminary review of feasibility of used hardware

components and control methods;
� Interfaces allowing the user to connect the toolbox with visualization soft-

ware.

2.2 Choice of software

To fulfill the objective of accessibility and ease of modification, MATLAB family of
software was chosen as a framework for developed toolbox. MATLAB is one of the
most popular scripting language and with the addition of Simulink software it can
become a powerful tool with the ability to set up numerical simulations in short
time. MATLAB is taught in most technical universities and there is significant
number of both courses available online and materials for self-teaching. For one
purpose (described in Section 2.11.3) a Python script acting as a dataflow bridge
was used, as it was the simplest method to solve a problem described in that
chapter. Several other software solutions were used for visualization purposes,
with the reasoning presented in Section 2.11.

Versatility of MATLAB may be attributed to the number of Add-Ons available
for it. SCARS Toolbox uses and requires the following modules:

� Aerospace Toolbox
� Navigation Toolbox
� CubeSat Simulation Library
� Control System Toolbox
� Simulink 3D Animation

2.3 Architecture

SCARS is divided into two parts: 1) Parts Library and 2) Modular Simulation.
The Parts Library contains Simulink subsystems, which can be connected to form
models of various complexity and for multiple scenarios. The latter, a Modular
Simulation, can be set up with either MATLAB command line scripts to represent
user’s spacecraft.
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2.3.1 Parts Library

SCARS Parts Library is a ready to use Simulink Custom Library - a collection
of blocks available to use in Simulink models. All blocks in library downloaded
alongside SCARS are parametrized, masked and described to ease the integra-
tion of library parts into user simulation. The library is divided into specific
sections: Satellite Models, Control Algorithms, Actuators, Sensors, Environment,
Visualization, Example scenarios and Other blocks.

Figure 2.1: SCARS Parts Library screenshot
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2.3.2 Modular Simulation

SCARS Modular Simulation is a ready-made Simulink model constructed to pro-
vide the user with setup containing complete simulation of the spacecraft. The
model can be initialized with prepared script described in Section 3.2. The model
is a simulation of cube-shaped satellite, which can be set on specified orbit using
various initialization methods, such as Keplerian elements in conjunction with Ju-
lian date time or geographical coordinates with velocity and rates in body axes.
In the same manner, all actuators and sensors available in SCARS library can be
connected to act on the spacecraft.

Figure 2.2: SCARS Modular Simulation screenshot

2.3.3 Main Signal Buses

To unify the signals transferred to blocks modeled in SCARS Toolbox a pair of
Simulink signal buses is proposed - SatStates bus, produced as the output of
Satellite Dynamics block and Env bus, collected as an output of Environ-
ment block. Since the buses are unified, there is no need for unit or coordinate
transformations between, for example, satellite model and sensor model. Follow-
ing tables present descriptions of signals contained in designed buses. Mentioned
reference frames are explained in Section 2.5.
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Name Unit Description Size

V ECEF m/s Velocity of the body in ECEF frame,
in relation to ECEF reference frame

1x3

X ECEF m Position of the body in ECEF refer-
ence frame

1x3

lla deg, deg, m Body latitude, longitude and altitude
in reference to Earth’s Geographical
coordinates

1x3

Euler NED rad Body rotation angles in relation to
NED reference frame

DCM ECI2B - Direction Cosine Matrix describing
rotation from ECI frame to body
frame

3x3

DCM NED2B - Direction Cosine Matrix describing
rotation from NED frame to body
frame

3x3

DCM ECEF2NED - Direction Cosine Matrix describing
rotation from ECEF frame to NED
frame

3x3

DCM ECEF2B - Direction Cosine Matrix describing
rotation from ECEF frame to body
frame

3x3

V B m/s Body acceleration in relation to its
inertial reference frame

1x3

Omega NED rad/s Body rotation rate in reference to
NED reference frame

1x3

Omega B rad/s Body rotation rate in reference to its
inertial reference frame

1x3

Euler B rad Body’s rotation angles in relation to
its initial position

1x3

dOmega B/dt rad/s2 Derivative of body rotation rate in
reference to its inertial reference
frame

1x3

A B m/s2 Body acceleration in relation to its
inertial reference frame

1x3

Table 2.1: SatStates bus signals description
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Since SatStates bus contains ideal values of satellite states, it is used by envi-
ronment models and models that include mechanical relations between satellite’s
frame and their hardware components. For other applications, like creation of
control loop, it is advised to use sensor models instead.

Name Unit Description Size

Magnetic Field [nT] nT Strength of the magnetic field
on Earth’s orbit, depending on
altitude, position and time

1x3

Environment Force [N] N Force acting on a spacecraft -
a sum of gravitational pull and
atmospheric drag

1x3

Sun’s Position [km] km Position of the Sun with refer-
ence to Earth, in ECEF frame

1x3

Atmosphere Density [km/m3] kg/m3 Density of atoms in partial at-
mosphere at body’s altitude

1

Table 2.2: Env bus signals description

Env signal bus contains information about parameters of the environment at
spacecraft coordinates. Although the values are derived from used models, they
should be treated as ideal values. Therefore they are used for applications where
the parameter directly influences the bahaviour of the model, like in magnetorquer
model described in Section 2.8.4. For comparison, in B-Dot controller described
in Section 2.10.3 it is suggested to use a sensor model instead and place it between
Env block and actuator or On Board Computer (OBC) model.
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2.4 Spacecraft Dynamics

Spacecraft mechanics are governed by the laws describing the motions of a body
under the influence of external and internal forces and torques. Forces acting on
a spacecraft influence its translational motion, which in the simplest form can be
described as a set of differential equations in a form of ẋ = Ax + Bu. In this
case, x is a state vector built from satellites position vector in three-dimensional
Cartesian coordinates and first order derivatives of said vector. For simplified
point-on-orbit satellite dynamics following equations can be used:



δu̇

δv̇

δẇ

δẋ

δẏ

δż


=



0 0 0 −n2 0 0

0 0 0 0 −n 2 0

−n 0 0 0 0 2n2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 −1 0 0





δu

δv

δw

δx

δy

δz


+



Tx/m

Ty/m

Tz/m

0

0

0


(1)

Equation 2.4 describes translational motion of the spacecraft on the orbit, where
n =

√
g/R, R is radial distance from attracting center, g is gravitational force

per unit mass, m is spacecraft mass and Tx, Ty, Tz are thrust components. On
the other hand, for small attitude changes of non-spinning spacecraft with respect
to inertial frame, equations describing rotational motion can be linearized. The
acquired system is presented on Equation 2.4:



ṗ

q̇

ṙ

Φ̇

Θ̇

Ψ̇


=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 n

0 1 0 0 0 0

0 0 1 −n 0 0





p

q

r

Φ

Θ

Ψ


+



Qx/Ix

Qy/Ix

Qz/Iz

0

n

0


(2)

Where Tx, Ty, Tz are torque components and Ix, Iy, Iz describe satellite’s inertia
in given axes.

One of the aims of this thesis is to create means to design a satellite control
system for users without much experience in that field. One of the ways to ac-
complish that is to eliminate the need to derive complex mathematical models
of the systems involved. Nevertheless, there exists a need for such models, for
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example for LQR control algorithm described in Section 2.10.2. One could try
to further develop Equations 2.4 and 2.4 into state-space representation of the
whole spacecraft system including all actuators and sensors, parametrize it and
programmatically modify it, for each configuration, to include only set-up parts.
Alternative solution it to use MATLAB Control System Toolbox and its functions
to automatically linearize Simulink models. The main advantage of such solution
is that it also encompasses all changes from the users to the SCARS Modular
Simulation. The process is described in Section C.

To provide the user with an ability to include a on-orbit dynamics model in
their simulations, Satellite Dynamics block was designed. This module is
built around Simulink Aerospace Blockset 6DOF ECEF (Quaternion) block.
SCARS provides a mask for said block, which allows the user to set up the pa-
rameters of the spacecraft and initial conditions for the simulation, as showed in
Section 4.1.

Figure 2.3: Satellite Dynamics SCARS block

The inputs to Satellite Dynamics block, as seen in Figure 2.3, are F_sat and
M_sat, which respectively correspond to forces and torques acting on the satellite
in its body reference frame, and F_env and M_env, which are in Earth-Centered,
Earth-Fixed (ECEF) reference frame. Such setup allows easy connection between
this and Environment block, described in Section 2.7. The output of this sub-
system is a bus signal, described in Section 2.3.3.
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2.5 Reference Frames

To find the states of the chosen object, one has to first describe the coordinate
system and the reference points used for this definition. Most useful ones from
the perspective of the spacecraft AOCS design are described below and their
relationship is presented in Figure 2.5.

Figure 2.5: Satellite Reference Frames [11]

2.5.1 Satellite Body Frame

Satellite Body Frame has its origin at the center of mass of the spacecraft, with
axes directions chosen to fit the design of the spacecraft. For example, for obser-
vation missions, most often one of the axes corresponds to the axis of satellite’s
optical instrument. Position and velocity vectors in this frame will be further
noted as rB and vB respectively.
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2.5.2 North, East, Down

North East Down (NED) is a local tangent plane coordinate frame. It is fixed
to the body of the satellite, with ZNED axis pointing towards the center of the
Earth, XNED axis oriented in the direction of north and YNED towards east. The
most popular application of NED frame is for aircraft and spacecraft, when most
objects of interest are below the vehicle. Therefore it is convenient to be able
to reference the position of the target with positive value. Position and velocity
vectors in this frame will be further noted as rNED and vNED respectively.

2.5.3 Earth-centered Inertial

The Earth-Centered Inertial (ECI) frame has its origin located in Earth’s center
of gravity. It has X axis parallel to and directed as vernal equinox direction, its
Z axis is constructed from the vector starting in origin and going through Earth’s
celestial North pole and Y axis is a vector cross product of the other two. Specific
ECI frame used in this thesis is J2000 frame, defined with with the Earth’s Mean
Equator and Equinox at 12:00 Terrestrial Time on 1 January 2000 [9]. Position and
velocity vectors in this frame will be further noted as rECI and vECI respectively.

2.5.4 Earth-centered, Earth-fixed

The ECEF, is a frame of reference can with origin in Earth’s center of mass and its
axes are parallel with international reference pole (ZECEF axis) and international
reference meridian (XECEF axis), with YECEF axis being vector cross product of
other two. The ECEF frame includes information about rotation of the Earth,
hence a point which would be fixed in the ECI frame would be progressing with
time in the ECEF frame. Vectors in this frame will be further noted as rECEF

and vECEF.
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2.6 Coordinates Transformations

Since for different purposes various reference frames and coordinate systems have
to be used, it is necessary to have the means to transform vectors between them.
As for reference frames the solution is to find a Direction Cosine Matrix (DCM),
that is a 3-by-3 matrix which can be used to transform three-dimensional vector
x into another vector y with the following equation:

y = DCMx (3)

Due to complexity of coordinate transformations, each one is described in its re-
spective subsection. All transformations are implemented within SCARS Toolbox
as the algorithms presented and masked for ease of use.

2.6.1 ECI position and velocity vector to Keplerian ele-
ments

Earth orbiting satellite’s position can be described by its position vector rECI

in Cartesian coordinate system, with center corresponding to Earth’s geometric
center. That vector in connection with spacecraft’s velocity vector vECI in same
coordinate system can be transformed into Keplerian elements by using following
equations:

a =
µ

2
(
µ
r
− v2

2

) (4)

i = cos−1
(
hZ
|h|

)
s (5)

e =

√
1− h2
µa

(6)

ψ = cos−1
(
a− |reci|

ae

)
, where sin(ψ) =

reci · veci

e
√
µa

(7)

θ = sin−1
[

sin(ψ
√

1− e2)
1− e cos(ψ)

]
(8)

M = ψ − e sin(ψ) (9)

And Ω and ω can be found from following relations:
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sin(Ω) =
hX√

h2X + h2Y
and cos(Ω) =

hY√
h2X + h2Y

(10)

sin(ω + θ) =
rZ

r sin(i)
and cos(ω + θ) =

rZ cos(Ω) + rY sin(Ω)

r
(11)

Where terms hX , hY and hZ are components of h = reci× veci vector and rX , rY
and rZ are components of position vector.

2.6.2 Keplerian elements to ECI position and velocity vec-
tor

To quickly obtain position vector from Keplerian elements one may define a co-
ordinate system with x, y axes on orbit’s plane with z = 0. Then the following
equations describe the coordinates:

x = a cos(ψ)− ae (12)

y = a sin(ψ)
√

1− e2 (13)

The position in Earth’s inertial Cartesian coordinate system can be found with
following system of equations:

r =

rXrY
rZ

 = [AZ(Ω)]−1[AX(i)]−1[AZ(ω)]−1

xy
0

 (14)

Where [Ad(α)] stands for transformation matrix about axis d by an α angle [4].

2.6.3 ECI to ECEF

To transform vectors calculated in inertial frame to Earth-Fixed reference frame
one has to multiply the ECI vector by following rotation matrix:

DCMECI
ECEF =

 cos θGMST sin θGMST 0

− sin θGMST cos θGMST 0

0 0 1

 (15)
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Where θGMST is Earth’s rotation angle; to be calculated with:

θGMST =
1

240
· mod [24110.54841 + 8640185.812866 · Y + 0.093104 · Y 2

− 6.2 ∗ 10−6 · Y 3 + 1.002737909350795 (3600hh+ 60mm+ ss) , 8640] (16)

Where Y is the number or Julian centuries elapsed from the J2000 epoch and
mod a, b is the modulo operator.

2.6.4 ECEF to NED

Implementation of this transformation assumes that the origin of ECEF frame is
at the center of the planet, the XECEF axis intersects the Greenwich meridian
and the equator, the ZECEF axis is the mean spin axis of the planet, positive
to the north, and the YECEF completes the right-hand system [10]. The following
equation shows the DCM for that transformation:

DCMECEF
NED =

− sinφ cosλ − sinφ sinλ cosφ

− sinλ cosλ 0

− cosφ cosλ − cosφ sinλ− sinφ

 (17)

2.6.5 ECEF to LLA

One can calculate geodetic longitude λ with ease, by following the simple relation:

λ = arctan(
YECEF
XECEF

) (18)

Yet to find the geodetic latitude φ Bowring’s iterative method has to be em-
ployed [12]. The calculations are performed inside the SCARS Satellite Model and
can be read from the workspace after the simulation is run at least once.
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2.7 Environment

Figure 2.6: SCARS Parts Library Environment module blocks

Environment module is responsible for producing environmental parameters such
as gravity, magnetic field, atmosphere density, etc., at the position of the simu-
lated spacecraft. The reasoning behind choosing these specific sources are in the
description of each sub-module. The main premise was that the source has to
be relevant for the choice of actuators. All models available in SCARS Parts Li-
brary are also collected in a single, unified block called Environment, as seen on
Figure 2.7, and use bus described in Section 2.3.3 as an output. These solutions
allow convenient implementation of Environment module in user’s model, but can
negatively affect computing time.
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Figure 2.7: Contents of SCARS Environment model
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2.7.1 Earths’s Gravity Model

Main centripetal force acting on a spacecraft on any orbit is gravity - it is defined
by the equation derived from the law formalized by Isaac Newton:

r̈ = −G(m1 +m2)r

‖r‖2
(19)

Where r is the position vector, m1 and m2 are the masses of two-body system
and G is the universal gravitational constant. Simplified with:

m1 = MEarth � m2 = mspacecraft (20)

One can derive the corresponding potential function:

u = −GMEarth

r
(21)

For a spacecraft on Earth’s orbit, this model is a very far-stretched approximation,
as it leaves out the influence of Earth’s non-ideal shape, changes in density gradient
in Earth’s interior and perturbations caused by gravitational fields of other bodies.
While the influence of other celestial objects is omitted in the SCARS toolbox due
to it being mostly designed for lower orbits, one can easily account for Earth’s non-
spherical mass distribution using function constructed with the use of Lagendre
polynomials to calculate the correction ε to potential function (21):

ε(r, θ, ϕ) =
∞∑
n=2

JnP
0
n(sin θ)

rn+1
+
∞∑
n=2

n∑
m=1

Pm
n (sin θ)(Cm

n cosmϕ+ Smn sinmϕ)

rn+1
(22)

Where the correction is a function of spacecraft’s position in spherical coordinate
system - r, θ, ϕ are in order altitude, latitude and longitude. The coefficients
Jn, Cm

n and Smn are computed to provide possibly best approximation between
observed and calculated orbit. Lagendre polynomials of following form:

P 0
n(sin θ)

rn+1
(23)
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Are called the zonal terms and Lagendre functions and ones of this form:

Pm
n (sin θ) cosmϕ

rn+1

Pm
n (sin θ) sinmϕ

rn+1

(24)

Correspond to tesseral terms. The denominating term is the so-called ”J2 term”:

J2 P
0
2 (sin θ)

r3
= J2

1

r3
1

2
(3 sin2 θ − 1) = J2

1

r5
1

2
(3r2sin2θ − r2) (25)

While equations (21) and (22) can be added together to faithfully model the
influence of Earth’s gravity field on the spacecraft, it was decided to use a ready
model from Simulink Aerospace Blockset - the Spherical Harmonic Gravity Model,
with EGM2008 planetary model, due to its accuracy and higher fidelity.

2.7.2 Partial Atmosphere

Earth’s atmosphere is composed of complex layers that are bounded basing on
their composition and parameters. Man-made objects on Earth’s orbit would be
located in thermosphere, if their orbit is at least partially under 600km altitude
above the surface of the Earth, or exosphere if above it. The former consists
mostly of molecular hydrogen and nitrogen, while the latter also of hydrogen,
helium ans carbon dioxide. The main effects of the higher layers of atmosphere
on the spacecrafts in Low Earth orbit (LEO) are drag, degradation of surface
materials and spacecraft glow. For the toolbox, the only relevant effect is the first
one, resulting in both aerodynamic force and aerodynamic torque acting on the
spacecraft.

Aerodynamic forces are created by spacecraft’s movement through the atmo-
sphere. The forces acting on the spacecraft are drag, lift and side slip force.
Yet the only one taken into consideration will be the drag, acting on spacecraft’s
tangential velocity, since the other are of negligible magnitude. To calculate drag
force, one has to use the following equation:

Fd = −1

2
ρCdAv

2 (26)

Where Cd is the drag coefficient, ρ is atmospheric mass density, A is body area in
a cross-section perpendicular to velocity vector and v is the total velocity of the
satellite with respect to the atmosphere.
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As of now, the effect of aerodynamic torque is omitted in SCARS Toolbox, as to
model it with high fidelity one needs to have a 3D model of the specific spacecraft.

Figure 2.8: Model of Earth’s atmosphere layers

The reference atmospheric model used in SCARS is NRLMSISE-00, which takes
date and position of the object in geographic coordinate system as input and
returns temperature and density of the atmosphere components as output. As
it was built for satellites, it allows for altitudes up to 1000km. In the toolbox,
orbits above that are considered to have negligible impact of the atmosphere and
therefore above this threshold atmospheric forces are set to zero.

2.7.3 Sun and Earth Relative Position

The position of Sun in relation to Earth and to satellite is important for simu-
lating mission elements such as spacecraft temperatures or solar panels charging
times. To acquire Sun’s relative position, MATLAB’s Aerospace Toolbox func-
tion, planetEphemeris() was used. By default, the function implements the
position based on the DE405 ephemeris in units of km. It was wrapped around
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SCARS specific function, getSunPosition() - a function returning array of Sun’s
ECI positions every day. The function takes simulation’s start time in Julian date
format as the first parameter and simulation duration, in seconds, as the second
parameter. It is then implemented in Simulink as a lookup table and whole model
is masked for ease of usage.

2.7.4 Earth’s Magnetic Model

For precise models of magnetometers and magnetometers it is necessary to include
a source of information about Earth’s magnetic field. Earth can be approximately
modelled as an magnetic dipole, but since the intensity of magnetic field ranges
from around 25.000 to 65.000nT , depending on parameters such as geographic po-
sition, altitude, time, and date, it may be necessary to use a high fidelity model.
It was decided to use National Geospatial Intelligence Agency (NGA) World Mag-
netic Model. This model is already implemented in MATLAB Aerospace Toolbox,
so it was just masked for use as a part of SCARS Toolbox.
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2.8 Actuators

Figure 2.9: All Actuators blocks available in SCARS Parts Library

In the following subsections, the descriptions of actuators included in SCARS
Toolbox are provided. All of them can be used in a model by themselves or
in combination with any other number of actuators. The model linearization
method described in Section C allows for using all provided actuators with all
control methods described in Section 2.10.

2.8.1 Ideal and Simple Actuators

Ideal Actuators are simply Simulink subsystems including unit gain. Their pur-
pose is to serve as a placeholder, if other parts of ADCS subsystems are tested
and simulation of actuator behavior is not necessary.

Simple Actuators are ought to simulate most generic sources of errors in actuators,
for the user to be able to create a more reliable placeholder for actuator not yet
available in SCARS Toolbox.
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2.8.2 Thrusters

Figure 2.10: Directional Thruster model

One type of actuators that provide the source for external forces and torques acting
on a spacecraft are gas thrusters. In case of small satellites, Cold Gas Propulsion
(CGP) Systems are the most popular solution, since its simple design leads to
smaller actuator mass and low power consumption. A CGP system operates in a
process of controlled ejection of compressed liquid or gas propellant.

Spacecraft thrusters can be used for orbit change maneuvers, rapid attitude
changes, momentum dumping, nutation and adjusting spin rates. The main ad-
vantage of gas propulsion is that the thrust can be controlled with high precision
and they can provide high forces and torques. Moreover, there is no need for
desaturation of a thrusters, in opposition to reaction wheels. Nevertheless the
requirement for propellant posses a problem for small satellites, making it a rare
method of attitude control in CubeSats and other micro- and nanosatellites.

The key parameters, available for set up in SCARS Toolbox Thruster model are:
thrust range, nominal thrust, specific impulse, amount of propellant, total im-
pulse, power consumption, mass and time delay to control. Same as in Simple
Actuators, noise sources can be set up.

In SCARS Parts Library various versions of Thruster are available:

� Directional Thrusters - Effective forces are assumed to be located on
spacecraft body axes, leading to the lack of external torques, hence this
model can be used for orbit corrections and maneuvers.

� Rotational Thrusters - Effective forces are assumed to be axisymmetric,
therefore there are no forces generated by the thrusters, so this configuration
can be used for pure attitude control. Additional parameter required for this
model is radial displacement for the thrusters.

� Bang-Bang Thrusters - Thrusters that operate in bang-bang control
mode, allowing for operation only with no or maximum thrust. Additional
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parameters required for this model are turn-on and turn-off thresholds in
control signal. They can be used either in orbit or attitude control and
in respective cases they follow the principles of Directional and Rotational
Thrusters.

Figure 2.11: Bang-Bang Thruster model

For all thrusters models the only input is the control signal, while the outputs
are fuel consumed and either generated force or torque. CGP Systems also have
a downside of decreasing thrust profile in relation with time, since thrust is cor-
related with the pressure of the propellant inside a tank. This property is not yet
modeled in SCARS Toolbox.

2.8.3 Reaction Wheels

Figure 2.12: SCARS Reaction Wheel model

Fast attitude control can be also achieved by the use of reaction wheels - mech-
anisms consisting of rotating flywheel and proportional electromagnetic torquer,
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such as DC motor. This allows very precise attitude maneuvers, with the possi-
bility to eliminate most disturbance torques. Reaction wheels operate at around
non-zero reference speed and change in their angular velocity imposes correspond-
ing torque on the spacecraft. The disadvantage of this solution is that reaction
wheels have fixed operating range and to achieve higher angular velocities for
the spacecraft, the wheels have to be desaturated using another actuators. In
CubeSats, for example, most commonly this would be solved by the addition of
magnetorquers.

In fast attitude control the motion around each spacecraft body axis can be con-
sidered to be decoupled from motion around two other axes. The equations of
motion that describe the influence of reaction wheels angular velocity q̇w on total
angular momentum H are as follows:

Iy q̇ = Ni+Qf +Qdy (27)

Θ̇ = q (28)

Jq̇w = −Ni−Qf (29)

Ri = e−N(q − qw) (30)

Qf = −c(q − qw) (31)

H = Iyq + Jqw (32)

Where e, i, R are respectively steering voltage, current in DC motor and armature
resistance. N is torque per unit current and c is viscous friction coefficient. Qf

is wheel bearing friction torque and Qdy stands for external disturbance torque.
Said equations were modelled in the toolbox as it can be seen on Figure 2.12.

The problem with modeling off-the-shelf reaction wheels is that datasheets rarely
provide the value of viscous friction coefficient c in the DC motor, therefore in
SCARS it is considered to be an optional parameter.

2.8.4 Magnetorquers

A magnetorquer is an attitude actuator which uses Earth’s geomagnetic field to
generate controlling torque. The active part in the magnetorquer is the solenoid,
which generates the magnetic dipole moment proportional to the current con-
ducted by the coil. This interaction is described with the following equation:

τB = M ×B (33)
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Figure 2.13: SCARS Magnetorquer model

Where τB is mechanical torque acting on the spacecraft, M the generated magnetic
moment inside of it and B is the magnetic field density.

As the product of a skew-symmetric matrix and a vector Equation 33 takes a form
of:

τBxτBy

τBz


 0 Bz −By

−Bz 0 Bx

By −Bx 0


Mx

My

Mz

 (34)

SCARS Magnetorquer block models a torque rod, a solenoid with a magnetic
core. The magnetic moment of a rod magnetorquer is a function of rod current
and parameters of the coil, as described in following equation:

M = IM
πlw
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 (35)

Where l is the length of magnetic core, w is the width of it and d is the diameter
of the wire. IM is the current flowing through the rod, which can be described
with a transfer function, where L is the solenoid’s inductance and R its resistance:

IM =
VM

Ls+R
(36)

The drawback of using magnetorquers for attitude control is that they are unfit
for fast maneuvers. Moreover, since Earth’s magnetic field density is inversely
proportional to cube of distance from Earth’s center, then without high grade
sensors or on-board models, they do not allow precise maneuvering on higher
orbits.
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2.8.5 Drag Sail

Figure 2.14: SCARS Drag Sail model

Drag sails use the occurrence of partial atmosphere (described in 2.7.2) to lower
satellite’s tangential velocity and therefore to quicken the deorbitation of the
spacecraft. The premise is to increase area-to-mass-ratio by deploying a large
and lightweight structure near the planned end-of-life of the spacecraft. Due to
this operating principle, drag sails are only relevant for low and medium mass
spacecrafts and are applicable exclusively on LEO. To calculate the perturbing
acceleration following equation is used:

F = −1

2
ρCdAv

2sinα (37)

Where alpha is the angle between the sail’s plane and satellite’s velocity vector.
Currently the moment of sail’s deployment is not simulated in SCARS toolbox.
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2.9 Sensors

Figure 2.15: All Sensors blocks available in SCARS Parts Library

For precise orbit, or attitude, determination both sensors and mathematical mod-
els have to be used. Spacecraft sensors can be divided into two types, based on
the nature of the performed measurement. One type, inertial sensors reflect the
rate of change, therefore any other source of measurement is needed, for initial
value acquisition and integration error correction. On the other side there are
reference sensors, providing absolute measurements. Sensors of this type measure
external parameters, such as Sun’s position or Earth’s magnetic field intensity,
which when compared against mathematical or empirical models can bare the in-
formation about satellite’s position or attitude. This division is visible in SCARS
models, as inertial sensors require input of satellite states, while reference sensors
need input from environment model.

It is important to mention, that it is possible to model sensors with various degrees
of fidelity and different focus. For example, the influence of mechanical parameters
on output signal of gyroscope is significant, resulting in a need for modeling it
with transfer function describing its properties. On the other hand, in sensors
such as star tracker the output is mostly processed in the software, therefore the
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focus is put on modeling the influence of spacecraft kinematics on the sensor, such
as blinding the camera by the sun.

2.9.1 Ideal and Simple Sensor

Ideal Sensor is a Simulink subsystem block with unit gain inside, used for testing
satellite behavior when sensor errors do not need to be taken into consideration.

Simple Sensor does not model any specific type of sensor. It takes most common
parameters used to transform generic ideal sensor into model which corresponds to
real hardware, that is: sampling frequency, measurement range and most common
sources of errors.

2.9.2 GPS Receivers

The Global Positioning System (GPS) is a Global Navigation Satellite Systems
(GNSS) owned adn operated by United States government. It allows determining
position, velocity and time with data taken from at least four GPS satellites.

Previously using GPS receivers in LEO was burdened with technical challenges,
as off-the-shelf components were mostly designed for terrestrial operations, not
encompassing for example for large variations in the received signal Doppler fre-
quencies. Recently smaller GPS receivers became available, even for CubeSat
use, such as Venus838FLPx GPS Receiver [32], allowing real time orbit determina-
tion using GPS navigation in smaller satellite projects. [8] When choosing a GPS
receiver one must take several parameters into consideration: update rate, hori-
zontal position accuracy, vertical position accuracy, velocity accuracy and failure
rate.

All listed parameters are set up in SCARS GPS Receiver part. To create the
model, MATLAB’s Navigation Toolbox function, gpsSensor(), was nested inside
a masked Simulink block. User can set all aforementioned parameters by editing
GPS model’s mask fields. Inputs of the model are satellite’s true position and true
velocity, and the outputs are position and velocity as computed by GPS receiver.

2.9.3 Accelerometers

Accelerometers are force sensors, most often paired with gyroscopes as a part of
Inertial Measurement Unit (IMU) board. To find acceleration three sensors are
located with their axes mutually orthogonal. The force measured is external to the
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Figure 2.16: SCARS Accelerometer model

board (with the exception of the gravitational force, as it likewise influences the
proof mass of the sensor). These measurements are integrated once to obtain the
velocity of the spacecraft with respect to the inertial space, or twice to calculate
estimated position.

Accelerometer model in SCARS is based on Three-axis Accelerometer from MAT-
LAB Aerospace Blockset. It is masked to be easily integrated with any model
produced with SCARS Toolbox.

2.9.4 Magnetometers

Figure 2.17: SCARS Magnetometer model

To make use of implemented Magnetic Field Model, a model of a set of magne-
tometers is available as a part of SCARS Toolbox. From magnetometer sensors
the measurements of direction and magnitude of magnetic field can be acquired.
After comparison with Earth’s magnetic model spacecraft’s on board software con-
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ducts transformation from measured vector to one of the reference frames used
by ADCS subsystem, providing information about its attitude. Due to their light
weight, low power consumption and have wide margin for operating temperature,
they are a relative sensors to be included on board of a small spacecraft.

The input for this block is magnetic field strength and the output is measured
signal, both in nT unit.

2.9.5 Gyroscopes

Figure 2.18: SCARS Gyroscope model

Gyroscopes, which fall under category of inertial sensors, measure angular rate
around fixed axis. In smaller spacecraft, which is in great deal of SCARS tool-
box use-cases, the conventional spinning mass gyroscopes are rarely used, due
to limitations in mass and size. Recent developments allow using much smaller
and cheaper Micro-Electromechanical Systems (MEMS) gyroscopes, which are
vibrating angular rate sensors. They were chosen to model for the toolbox, as
of popularity in projects with highly restricted budget. [5] In vibrating gyroscope
the Coriolis effect is causing the vibrating core to produce a force acting on its
support. The measurement of the force is used to determine the rate of rotation
of the body around gyroscope axis. MEMS gyros are similar to integrated cir-
cuits, which use the miniaturized version of mechanisms based on principles of
operation of either vibrating wheels, tuning forks, resonant solids or similar com-
mon designs. [6] While, besides previously mentioned qualities, the advantages of
MEMS gyroscopes are availability of both analog and digital outputs, low power
consumption and commercial availability. On the other hand, MEMS gyros have
shorter lifetime and lower performance when compared to pricier alternatives.

In SCARS the gyroscope model, as presented on Figure 2.18, includes a second
order transfer function, describing the system using parameters such as natural
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frequency, bandwidth, damping ratio, but also it includes gyroscopic bias and
noise source, in attempt to transfer ideal gyroscope into real sensor.

2.9.6 Star Tracker

Figure 2.19: SCARS Star Tracker model

A star tracker is a complex attitude sensor, providing the most accurate deter-
mination within available commercial solutions. It consist of optical camera and
wide array of processing algorithms, which allow to read the position of the stars
from captured image and to compare that positions to database of known and
visible stars to find the attitude of the spacecraft. Moreover, it can do so without
a-priori knowledge, using lost-in-space algorithm [19].

Simulating stars position to achieve high fidelity star tracker model and using
parameters such as camera resolution and algorithm accuracy and precision is a
complicated computational problem. Therefore it was decided to assume ideal
output from star tracker and to focus on mechanical problems, such as blinding
the sensitive camera sensor by light from the Sun or reflected by the Earth. The
model, presented in Figure 2.19, the model calculates the relative position of Sun
and satellite, then Earth and satellite and based on this, and two key parameters
input by the user - Sun and Earth exclusive angle, provides the actual output or
null value, if the star tracker is blinded. Additionally, if the parameter is non-
zero given, the model adds the delay of time it takes the software to solve the
lost-in-space problem to the null value output duration.
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2.10 Control Methods

Figure 2.20: All Control blocks available in SCARS Parts Library

In following sections all control methods implemented in SCARS are described,
along with their implementation. Furthermore, the tools available in the toolbox
are presented.

2.10.1 PID Controoler

Proportional-Integral-Derivative controller (PID) is a feedback control loop method,
widely used in most industrial applications where the simplicity of the design in
of importance. It can be described with a transfer function in Laplace domain, as
seen on Equation 2.10.1

L(s) = Kp +
Ki

s
+Kds (38)
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Where Kp, Ki and Kd are, respectively, proportional, integral and derivative
gains of the controller. Most relevant application of the PID controller is to
minimize the error between reference state and actual state of the plant it controls.
Within SCARS, the most common use is to provide input signals for the actuators,
whether it is required thrust or moment, or in more specific cases, driving voltage.

The controller can be set up to be only proportional, integral or derivative con-
troller, or any combination of these modes. In that case, the gain values for unused
modes have to be set to zero.

In SCARS the input of PID Controller block is error signal and the output is
control signal.

2.10.2 LQR

Linear Quadratic Regulator (LQR) is an optimal control method that uses a
solution which in simplest form minimizes the quadratic cost function presented
in Equation 2.10.2 to generate static gain matrix K.

cost =

∫
xTQx+ uTRu (39)

LQR method requires the state (Q) and control (R) weighting matrices, which
respectively correspond to state and input vectors of the system. They describe
the control effort that the controller puts on either minimizing the error in each
state or magnitude of each input. Both Q and R matrices are diagonal, and most
often are chosen arbitrarily and tuned in iterative process to achieve required
controller behavior. Once calculated, the static gain matrixK is used in a feedback
control law:

u = −Kx (40)

To use LQR method in SCARS Toolbox, the state-space system of the spacecraft
model has to be found first. As mentioned before, this is done by following the
linearization process described in Section C.

Implementing LQR Controller in SCARS toolbox automates the process for the
user, asking only to input Q and R matrices as block’s mask parameters. The
gain matrix is then calculated with MATLAB lqr function.
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2.10.3 B-dot Algorithm

B-dot algorithm is popularly used for spacecraft detumbling. In its principle, mag-
netorquers are used to generate a torque that dampens the initial rotation of the
spacecraft. The required magnetic moment is proportional to the change of mag-
netic field around the spacecraft. The required magnetic dipole M is calculated
from the following equation:

M = −kḂ (41)

Where k is the tunable control constant and B is the magnetic field intensity in
satellite body frame [13].
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2.11 Visualization Tools

While analytical approach may provide all necessary information to conduct a
technical review of a control system, it might be convenient to present the behavior
of the spacecraft in visual form. In these chapters three software solutions are
described: one directly implemented in SCARS Toolbox and other two can use
simulation outputs to show how modelled satellite performs.

2.11.1 MATLAB Virtual Reallity Toolbox

Virtual Reality Toolbox is an extension for MATLAB which allows creating and
interacting with 3D virtual reality models of dynamic systems. In its core it
uses Virtual Reality Markup Language (VRML), a language created in the early
days of World Wide Web (WWW) to display 3D objects and animations. This
toolbox provides a way for implementing the VRML models inside MATLAB
script or Simulink simulation, and allows control of driving display or animation
with MATLAB variables and Simulink signals. Moreover, the toolbox is integrated
with VRML viewer and VRML editor, allowing building and displaying models
directly from MATLAB environment.

Virtual Reality Toolbox was used in SCARS as most core method of visualization.
The VRML model is set up with 3 objects: Satellite, Earth and Sun, as they can
be considered most useful when observing the effects of the simulation. Satellite
model also includes objects representing antennas’ range or optical instrument’s
field of view, if set up in simulation. This feature can be useful for analysis of
imaging capabilities.

The transformations required to process the data generated by SCARS’ Vehicle
Dynamics block into VRML parameters are as follows:

rVRML =

1 0 0

0 0 −1

0 1 0

 rECEF (42)

To calculate spacecraft’s rotation vector rot as required by VRML, one has to
transform ECEF to Body direction cosine matrix into quaternion [q0 q1 q2 q3]
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(scalar first) and then use the following equation:

rot =


q3

q1

q0

2 ∗ acos(−q2)


T

(43)

Figure 2.21 the example of Virtual World visualization is provided. The animation
is set up so that the user can move the camera around, or they can choose (visible
in top-left corner) a ”Sat Cam” viewpoint, which follows the satellite translation
and rotation.

Figure 2.21: Example of Virtual World satellite visualization
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2.11.2 Systems Tool Kit

Systems Tool Kit (STK), formerly named Satellite Tool Kit, is a platform for
analyzing and visualizing variety of ground, sea and space platforms missions.
STK is a commercial software solution used by most major organizations and
companies such as National Aeronautics and Space Administration (NASA), ESA,
German Aerospace Center (DLR), Boeing, ICEYE. Features most relevant to the
topic of this thesis are the graphical engine which allows displaying the position
and attitude of the satellite, and the set of analytical tools, such as ground station
connection time calculator, allowing for fine-tuning of mission details.

To visualize SCARS simulation results with STK, one must generate timestamped
ephemeris and attitude files. SCARS generates such files for the user, with pre-
determined format according to STK documentation [33]. Both files contain the
preamble specifying parameters such as scenario epoch time, central body, coor-
dinate system, distance unit and format of the file. As SCARS relies mostly on
ECEF reference frame, it is also chosen for ephemeris and attitude files. After the
preamble, the file contains the lines for each data point. In case of ephemeris file
(.e file) they have a format of:

<TimeInSeconds> <X> <Y> <Z> <xDot> <yDot> <zDot>

Where the unit of time is seconds and relative to defined scenario epoch and
following parameters are ECEF vectors in m, m/s and m/s2 respectively. For the
attitude file (.a file), the format is:

<TimeInSeconds> <Y> <P> <R>

Where time is formatted in same manner as in ephemeris file and the following
parameters consist of yaw, pitch and roll Euler angles given in degrees.

Example .e and .a files can be found in Section A and Section B respectively.

Data produced by a simulation of a simple model, consisting only of Environ-
ment and Satellite Dynamics blocks created with SCARS Toolbox was ex-
ported into .e and .a, from which first lines are shown in mentioned Appendixes.
The results were imported into STK and can be seen on Figure 2.22 and Fig-
ure 2.23.
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Figure 2.22: Example of STK 3D satellite visualization

Figure 2.23: Example of STK ground track representation
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2.11.3 Kerbal Space Program

Kerbal Space Program (KSP), a space flight simulation video game, can be used as
a nonconventional method to visualize the results of SCARS Toolbox simulation.
In KSP the player directs a developing space program originated on fictional
Earth-like planet Kerbin. The game provides the tools for the players to design
and fly rockets, probes, satellites, spaceplanes, rovers, and other spacecraft from
a library of components [34].

The connection between MATLAB and KSP is possible because of fanmade Re-
mote Procedure Call Server for KSP (kRPC) mod. It creates an API server
running alongside the game, with which calls can be made using already written
clients in most popular languages, like C++, Python, Lua, Java, etc. Integrating
it with MATLAB is a difficult task, as MATLAB does not provide simple means
for threading, which means that inputs for the game have to be precalculated to
work in real time. Moreover, there is no kRPC library written directly for MAT-
LAB, therefore a simple Python bridge was written to parse the data taken from
the game, compare them with pre-generated SCARS simulation scenario outputs
and send them to KSP as in-game AOCS subsystem inputs.
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3 SCARS Documentation

The purpose of this chapter is to provide the user with information about SCARS
Toolbox documentation. While most of the structure and architecture of SCARS
is described in Section 2.3, the purposes and operation principles of major blocks
are shown in Section 2.4, 2.7, 2.8, 2.9, and the instructions on how to use it are
provided in Chapter 4, some additional explanation might be necessary.

In following sections contain the descriptions of folder structure in SCARS, the
scripts which are shipped along Simulink models and how SCARS uses Simulink
model masks to provide easily accessible documentation to the user.

3.1 Folder Structure

Main folder in which SCARS toolbox is downloaded is called scars_toolbox. It
contains scarsLibrary.slx - a file with SCARS Parts Library, scarsModel.slx
- Simulink SCARS Modular Simulation model and scarsProject.prj - a MAT-
LAB project file [38] which allows the user to launch and initialize SCARS Toolbox
using just one file.

In addition to that, under scars_toolbox following directories are located:
examples - Directory containing example simulations presented in Chapter 4;
resources - Directory containing files used by SCARS scripts and Simulink mod-
els; scripts - Directory containing files described in Section 3.2.

3.2 MATLAB Scripts

Along with Simulink models, SCARS is shipped with few MATLAB scripts. Their
aim is to automate menial tasks that have to be performed by the user. Since
the scripts guide the user with interactive prompts, there is no need for detailed
documentation, just explanation of their purpose, presented in the list below:

� scarsSetup - Once run it provides the SCARS Modular Simulation with all
necessary variables. Can be copied and edited to initialize the model with
parameters chosen by the user.

� getSunPosition - Provides Sun’s Position [km] block with arrays for
lookup tables. Has to be run before using said block.

� createSTKFiles - Exports data from SCARS simulation into STK ephemeris
and attitude files.
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� getSISOSystem - Changes the system linearized with Simulink Model Lin-
earizer into Single Input Single Output (SISO) system. Walks the user
through the process with series of prompts, hence initially it doesn’t require
any parameters.

3.3 Simulink Models Masks

Each model included in SCARS Parts Library is masked with Simulink mask [35].
This allows the user to open custom interface for selected SCARS block, with
editable fields for each parameter used in the setup process of that part. Most
importantly, masks contain the description of the block. In case of SCARS, if the
block represents a piece of hardware, the description contains short explanation
of principle of operation of said part, its purpose within AOCS subsystem, notes
about parameters, and description of block’s inputs and outputs. In this way,
majority of SCARS documentation is attached to the model itself, where it is easily
accessible. An example of SCARS block mask can be found in figure Figure 3.1.

Figure 3.1: SCARS Reaction Wheel block mask
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Also, Simulink masks contain pieces of MATLAB code, which are executed after
adding or changing the block. This code allows further customization of the
initialization process. For example, Reaction Wheel (1 axis, vector) model
transforms the vector given as axis of operation into its norm, ”sanitating” user’s
input.
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4 Case studies

The following chapters shows typical use-cases of SCARS Toolbox. First two
sections can serve the purpose of teaching with step-by-step instructions how to
set-up a simple project. Following parts showcase real life example spacecrafts,
of which AOCS Subsystems can be simulated with blocks from SCARS Parts
Library. At the end of the chapter examples of control system tests are presented,
proving that SCARS can be used for both prototyping and reviewing processes.

4.1 Simple spacecraft example

The nominal usage of SCARS Toolbox is to take a simple objective that designed
AOCS subsystem has to fulfil, choose on board hardware and model the spacecraft
accordingly, using only necessary components. To showcase the basic workflow
below are presented the steps describing a process to check whether chosen set
of reaction wheels and gyroscopes can provide ±10 arcminutes accuracy
during 10s of geographic coordinates tracking. The model constructed for
this example will be further referred to as Example Model.

(a) Example Model (b) Spacecraft Dynamics Mask

Figure 4.1: Example Model creation: Step 1
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Step 1: Initial Spacecraft Dynamics setup

To set up the spacecraft as a point in orbit spacecraft dynamics model the user
needs to add Spacecraft Dynamics block from SCARS Parts Library, as seen
on Figure 4.1 (a) and to input parameters describing the simulated spacecraft
into object’s mask. Several initialization methods are available, corresponding to
reference frames in which the user can input the data about the starting point.
In this case, since the objective is to track geographic coordinates, the method of
choice is LLA Position & NED Velocity, Rotation. The choice of parameters,
corresponding to average CubeSat, is presented in Figure 4.1 (b). Initial latitude
and longitude were chosen arbitrarily, while still in the neighborhood of the point
to be tracked.

Afterwards the user can set up Simulink model solver parameters to Fixed-step
with ode14x solver choice, while leaving the rest with default settings. While not
being necessary, it allows larger step-size when using Derivative blocks.

Step 2: Environment setup

(a) Example Model (b) Gravity Mask

Figure 4.2: Example Model creation: Step 2

This spacecraft does not use magnetorquers nor does not have any major drag-
inducing components, therefore the relevant block representing environment’s in-
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fluence on the satellite is the Gravity [N] block. The only parameter to input is
spacecraft’s mass, as seen on Figure 4.2 (a).

Step 3: Actuators choice and setup

(a) Example Model (b) Reaction Wheel Mask

Figure 4.3: Example Model creation: Step 3

The next step is to implement the choice of actuators into the spacecraft model.
In this example the user might want to test the NanoTorque GSW-600 reaction
wheels, in nominal configuration of one wheel for each spacecraft body axis, from
GomSpace manufacturer. The list of relevant parameters, compiled from the actu-
ator’s datasheet, can be seen on Figure 4.3 (b). They were put into as parameters
of Reaction Wheel (1 axis X/Y/Z) block from SCARS Parts Library and
added to Example Model. The required inputs are the control signal and Sat-
States bus signal (described in Section 2.4), while the outputs are torque and
wheel angular rate.
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Step 4: Setup of control algorithm

(a) Example Model (b) PID Mask

Figure 4.4: Example Model creation: Step 4

A PID controller was chosen as a control mechanism for reaction wheels. Fig-
ure 4.4 (b) represents the initial set up of the parameters of this controller block.
Saturation of PID Controller output signal was set up in accordance to hard-
ware’s maximum voltage.

Step 5: Coordinate transformation and reference signal

SCARS Toolbox also provides a way to speed up the process of building math-
ematical transformations, allowing the user to conduct initial tests first and to
design the software implementation afterwards. This approach leads to signifi-
cant savings in amount of work to be performed by the control system engineer,
as failing solutions can be rejected without spending time on setting up algorithms
from scratch. In this case, Lat/Long to Heading block was used, without the
need for any further setup. As first two inputs are the desired geographical coor-
dinates and the last one is the position vector of the satellite, in ECEF reference
system.
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Figure 4.5: Example Model creation: Step 5

Step 6: Sensors choice and setup

(a) Example Model (b) Gyros Mask

Figure 4.6: Example Model creation: Step 6

Figure Figure 4.5 shows that the only signals necessary to close the control loop as
the satellite’s position, as an input to Lat/Long to Heading, and Euler angles
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in body reference frame. The former is irrelevant to the posed objective of this
Example Model, therefore was set up to be measured by the Ideal Position
Sensor (ECEF) block, and the latter had to be the analysed gyroscope. Gyros
block was added to the simulation and set up with the parameters of the gyroscope,
chosen by the fictitious user to be ADXRS614 MEMS Gyroscope, as proposed by
Li et al [14].

The extract from the datasheet and its representation as SCARS’ block parame-
ters can be found on Figure 4.6 (a) and Figure 4.6 (b) respectively.

Step 7: Simulation and verification

Finally, the simulation has to be run by the user and the results can be verified.
The model is simulated to track reference geographic position of 10 degrees of
latitude and 40 degrees of longitude. The satellite progresses over geographical
coordinates as presented on Figure 4.7 (a), which results in calculated reference
angle presented on Figure 4.7 (b). As it can be seen, the exposure time happens
at around 200s mark, when the satellite is closest to imaging location. Reference
angles change rapidly around that point in time.

(a) Geographical position of the satellite (b) Satellite reference body angle

Figure 4.7: Data used for and produced by tracking subsystem
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Figure 4.8: Plot of Euler angle error against reference angles, derived from geographical
coordinates and satellite position

Figure 4.9: Plot of Euler angle error against reference angles, derived from geographical
coordinates and satellite position, in focus on time between 200 and 250 seconds
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Figure 4.8 shows the results from Example Model simulation. It is assumed that
the satellite has attained attitude close to required during previous orbit, to mit-
igate the possibility of high body rates achieved during reference tracking rise
time. During the first minute the satellite reaches accuracy under 1 degree and
the error decreases.

The resulting plot is magnified to focus on simulation time between 200 and 250
seconds. It can be observed that for 10 seconds of marked timing the accuracy of
the control system maintains the angle within ±10 arcminutes. While this can be
considered satisfactory and concludes this example, it is possible to improve the
response of the system using methods presented in Section 4.4.

4.2 PW-Sat2

As written on its website, ”PW-Sat2 is a student satellite project started in 2013
at Warsaw University of Technology by the Students Space Association members.
Its main technical goal is to test new deorbitation technology in form of a large
deorbitation sail whereas the project purpose is to educate a group of new space
engineers. In February 2018 PW-Sat2 became fully integrated and was being
prepared to the launch into orbit planned for the second half of 2018.” [15]

Figure 4.10: PW-Sat2 model created with components from SCARS Parts Library

As it can be seen on Figure 4.10, PW-Sat2 Simulink model is build exclusively
from parts available SCARS toolbox, save for connecting blocks. It contains
Satellite Dynamics block as the core of the simulation and it is set up using
Keplerian elements taken from PW-Sat2 first Two-line element set (TLE) frame.
Apart from that, full SCARS Environment model is included and connected
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to two actuators: Drag Sail and Magnetorquers (Detumbling). Figure 4.11
shows the setup of actuators’ parameters - sources of these values are described
in following sections.

(a) Drag Sail block mask (b) Magnetorquers (Detumbling) block mask

Figure 4.11: Parameters of SCARS PW-Sat2 model

4.2.1 Detumbling

One of two modes of control that PW-Sat2 operates in (with the other one being
Sun Pointing Mode) is Detumbling Control Mode. Detumbling maneuver is per-
formed after deployment of the spacecraft from a carrier rocket. As the satellites
are separated from the deployment mechanism, they are burdened by non-zero
initial angular rates. To counteract that and stabilize a satellite PW-Sat2 is
equipped with a set of two perpendicular magnetorquer rods and one air core, in
total one coil acting along each of satellite’s body axis. The crucial parameters
used by SCARS model of PW-Sat2 are listed in Table 4.1. [36] Exact values are
taken directly from the datasheet of ISIS Magnetorquer Board (iMQT) [37], as it
was the magnetorquer used by PW-Sat2. Since SCARS contains only model for
magnetorquer rods, the air core magnetorquer was assumed to be another torque
rod. Also, since not every parameter of magnetorquer could be found in the
datasheet, the missing fields were filled with data from similar ones.
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Parameter Value

Nominal magnetic dipole 0.2Am2

Maximum actuation envelope error 3µT

Power consumption during actuation 1.2W

Maximum operating voltage 5V

Mass 196g

Table 4.1: Parameters gather from magnetorquer board installed on PW-Sat2

As it can be seen on Figure 4.12, detumbling was mostly successful, with small
angular rates remaining on each axis. Such result is possible, since change in mag-
netic field on magnetorquers is proportional to the angular rate of the spacecraft,
so when spacecraft is rotating slowly the torque generated by the actuator is also
minor. Given enough time the satellite should approach near-zero rotation rate,
but resulting value should be enough for good connection with the ground station
to transfer into more active control mode.

Figure 4.12: Results from SCARS simulation, with magnetorquers set up for detumbling
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4.2.2 Deorbitation with drag sail

One of the main objectives of PW-Sat2 mission was to deploy and test the ef-
fectiveness of its drag sail in deorbitation maneuver. The sail was 2x2m square
made from aluminized polyester boPET film [18].

In this example, SCARS toolbox was tested against data points derived from
NORAD measurements. The simulation was run with the drag sail set up to be
deployed around 25th day of the mission.

Figure 4.13: Results from SCARS simulation, with drag sail included

Since sail’s deployment the aforementioned decrease of satellite’s attitude is pre-
sented in Figure 4.14, showing the proof of deceleration caused by the sail. When
comparing results from SCARS simulation with data collected from PW-Sat2
TLEs, visible on Figure 4.14 it is apparent that attitude changes are much more
brisk in SCARS model than in real life. Such results were to be expected, as in
PW-Sat2, shortly after deployment the sail has torn, therefore the effective drag
was much lower than simulated value [21]. Also, since TLE data is a mixture of
propagation and observation, the rate of descent is not accurate for the first few
days after sail’s deployment. In addition to that, simulated results may seem
much smoother, as they the data points are averaged over duration of 10 orbits,
when TLE data points are located arbitrarily.
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Figure 4.14: Average altitude of PW-Sat2 satellite as taken from North American
Aerospace Defense Command measurements. On X axis there is mission time in days,
on Y axis there is an average altitude in km [20]

Simulation of PW-Sat2 deorbitation showcases the SCARS Toolbox’ ability of
performing long-term simulation.

4.3 Sentinel-2

Sentinel-2 is an European polar satellite mission carried out by ESA as a part of
Copernicus Programme. It consists of constellation of twin polar orbit satellites,
Sentinel-2A and Sentinel-2B and its aim is to deliver Earth observation data to
broad public, providing wide range of services such as natural emergency man-
agement, agricultural monitoring or water classification [40].

As per document describing Sentinel-2 ADCS subsystem, the satellites operate
on a sun-synchronous orbit, with 786km mean altitude and 10 : 30 local time of
descending node. They maintain Earth-oriented attitude in all operational modes.
The required pointing performance is moderate, but the main design driver is the
need for precise geo-location of the images [39]. The actuators and sensors on board
of Sentinel-2 are described in Table 4.2.

Using that data, the model was created using SCARS Parts Library for demon-
stration purposes. It ought to prove that this toolbox can be used not only for
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No. Unit Type Supplier Name

3 MAG 3-axis fluxgate magnetometer ZARM Technik FGM-A-75

2 GPRS 2 band GPS receiver RUAG -

3 STR Active pixel sensor star tracker Jena Optronik Astro APS

4 IMU High performance fibre optical gyro Astrium ASTRIX 200

3 MTQ 140Am2 magnetic torquer ZARM Technik MT140-2

4 RW 18Nms reaction wheel Honeywell HR12

8 THR 1N monopropellant thruster EADS ST CHTIN-6

Table 4.2: Actuators and sensors on board of Sentinel-2 spacecraft [39]

small educational satellite missions, but also for purposes of larger scientific and
commercial satellites. As one can see in Figure 4.15, the connections between
Satellite Dynamic model, Environment block, Sensors and Actuators sub-
systems are solved with signal buses described in Section 2.3.3.

The subsystems can be explored, showing the setup of SCARS block responsible
for sensors in Figure 4.16 and actuators in Figure 4.17. Since the model serves
only as an example, it is not fully functional. The on board computer and state
machine responsible for sensor fusion and for fault detection and isolation are not
recreated in the model - reproducing algorithms behind this could be a topic for
another thesis. Also, one can notice that Sentinel-2 model includes a sun sensor
model. In current version of SCARS it could be only implemented by using Ideal
Sensor block.
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4.4 Other application of SCARS Toolbox

While previous sections provide examples for which whole spacecrafts models had
to be constructed, the following examples show how SCARS Toolbox can be used
to conduct further tests on already prepared models.

4.4.1 Controller design using linearized model

In Section 4.1, the gains in PID controller for reaction wheels were set up with
empirical analysis, rather than on any tuning method. Alternative to that would
be to use the linearization method described in Section C and Control System
Designer, which is available as a part of MATLAB Control System Toolbox. To
showcase this possibility Example Model from previous chapter was linearized
according to appendix, with resulting state-space representation:

A =



2.5e-6 0 0 7.5e-7 0 0 0 0 0

0 −2.5e-6 0 0 7.5e-7 0 0 0 0

0 0 −2.5e-6 0 0 7.5e-7 0 0 0

2.5e-6 0 0 −7.5e-7 0 0 0 0 0

0 2.5e-6 0 0 −7.5e-7 0 0 0 0

0 0 2.5e-6 0 0 −7.5e-7 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0


(44)

B =



-0.00025 0 0

0 -0.00025 0

0 0 -0.00025

0.00025 0 0

0 0.00025 0

0 0 0.00025

0 0 0

0 0 0

0 0 0


(45)

Where rows from 1 to 3 represent reaction wheels angular rates, from 4 to 6 are
satellite angular rates and from 7 to 9 - body angles. Said system can be put
into controller-plant feedback loop in figure Figure 4.18 in form G = Ax + Bu.
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The minimal realization of a transfer function of this system can be approximated
to G(s) = 2.5·10−4

s(s+3.25·10−6)
. The response is very close to an ideal double integrator,

with some damping coming from losses inside the reaction wheels, coming from
simulated losses on the circuits and mechanical components.

In the loop presented on Figure 4.18, the controller function acquired from Control
System Designer is put in place of C block.

Figure 4.18: Feedback loop diagram

As Control System Designer only works with SISO systems, the next step is
to choose which output should be analysed. In case of Example Model it does
not make a difference which axis is chosen. This task can be performed with
getSISOSystem described in Section 3.2.

After setting it up in Control System Designer, it shows Bode plots, Root Locus
diagram and Step Response plot for the system. Using provided tools one can set
up desired form of the controller, and edit Bode plots and Root Locus diagram
until desired response is achieved. It was assumed that the controller needs a
complex pole and a real zero, to be able to follow reference signal during tracking.
Since the noise in gyroscopes might be causing the plant to drift too much, the
desired system has to have a larger real part of the pole pole than zero. After
setting it up and using Bode Editor to get high enough gain and phase margin,
as seen on Figure 4.19.

The acquired controller has a transfer function of form:

C(s) = 10200
1 + 10s

1 + 0.33s
(46)

Which turned out to be a damped controller, with step response presented on
Figure 4.20.

Figures 4.21 and 4.22 represent the performance of the new controller, comparable
with the one designed by empirical methods, with slight advantage of using the
one tuned with Control System Designer. Figures 4.23 and 4.24 contain, for com-
parison, Bode and Step Response plots generated for controller from Section 4.1.
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Figure 4.19: Bode plot of tuned system

Figure 4.20: Step response of tuned system
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Figure 4.21: Plot of Euler angle error against reference angles, derived from geographical
coordinates and satellite position

Figure 4.22: Plot of Euler angle error against reference angles, derived from geographical
coordinates and satellite position, in focus on time between 200 and 250 seconds
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Figure 4.23: Bode plot of PID controller from Section 4.1

Figure 4.24: Step Response plot of PID controller from Section 4.1
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4.4.2 Contingency scenarios simulation

SCARS provides an easy ways of testing various contingency scenarios, which
means it is possible to quickly adapt the simulation to represent redundant struc-
tures, by swapping one sensor or actuator for another, or just by modifying existing
elements. Scenario and Example Model from Section 4.1 can be considered good
example. In this case, Nan-oTorque GSW-600 reaction wheels set contains four
reaction wheels, one for each Cartesian axis and one located on direction vector
r = [1, 1, 1]. This setup makes it possible for the satellite to have 3 degrees of
freedom even if one actuator is not responding.

To adapt Example Model to this scenario, one must only change one reaction
wheel block from Reaction Wheel (1-axis, X/Y/Z) to Reaction Wheel (1-
axis, vector) and set the Operating Axis parameter to [1 1 1] value (the norm
is calculated from the vector, so its length is not relevant in this case). Then
similar tests as in Section 4.1 can be performed to measure whether the new
setup can satisfy the mission’s requirements.
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5 Conclusions

The aims behind this work were stated in Section 1.2, with description. SCARS
Toolbox was designed as a part of a project destined to fulfil these objectives.
Below said list is repeated, with description of proposed solutions and discussion
on the degree of the success in regards to fulfillment of these aims.

� Conduct a review of existing tools for preliminary spacecraft de-
sign: In Section 1.3 a comprehensive review was presented, with reasons
why there is still a neef for a toolbox such as SCARS and why any available
solution do not fill this niche.

� Create a spacecraft dynamics and AOCS model: For purposes of the
thesis a spacecraft dynamics model was created, basing on tools available
in MATLAB and Simulink software family. The product, Satellite Dy-
namics block described in Section 2.4, was mostly based on review and
implementation of existing solutions, not designed from the ground up. On
the other hand, the actions taken to build the toolbox fulfilled an objec-
tive of creating a library of models, from which an ADCS subsystem can
be built. The resulsts of that were presented in both a simple spacecraft
case in Section 4.1 and also in Section 4.3, with advanced set of sensors
and actuators. However during the creation of these models some problems
were encountered, such as lack of detailed listing of hardware parameters in
available datasheets, or, as it can be seen in Section 4.2, it was necessary to
assume or estimate certain parameters of the magnetometers, as the only
provided ones were on lower level of complexity than SCARS magnetometer
model.

� Assemble a library of models: SCARS Parts Library was created, and
with techniques described in Section 2.3.3 the components can be easily
connected with each other. Moreover, since models available as a part of
SCARS Toolbox are composed from basic elements and niche Simulink tool-
boxes were avoided, it is possible to include them in unrelated models with
next to no set up. To have a complete list of most crucial building blocks
for control system design, SCARS Toolbox is only lacking a way to perform
sensor fusion such as, for example, Kalman filter implementation.

� Provide a documentation of the toolbox: This objective is mostly
fulfilled by the contents of this thesis, specifically Chapter 2, Chapter 3 and
Chapter 4. In addition to that, the blocks available as a part of SCARS
Parts Library contain descriptions leading the users to methods of their
implementation.

� Share the toolbox to be available online: As SCARS Toolbox is al-
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ready a usable product, there are directions in which it could be improved
(as described in last paragraph of this chapter). Release of this software
on MATLAB Central is planned, along with reaching out to CubeSat com-
munities to present the toolbox. For now, it can be found on author’s
public GitHub repository under a following address: https://github.com/
asmialek/SCARS-Toolbox.

Apart from that, SCARS Toolbox itself was created with much more specific goals
in mind, most of them described in Section 2.1. It can be declared that all these
objectives were met and it was proven so in the scope of this thesis.

It can be argued that SCARS Toolbox could be further expanded, mitigating
some problems described in this chapter. For example, to avoid the problem of
having a datasheet with too few details, the models could be prepared with various
options for initial set up, or with multiple version of the model, operating with
different sets of parameters. To solve the problem with lacking a model of certain
actuator, more models can be designed to be used as a part of SCARS Parts
Library. However in its base structure, SCARS Toolbox fulfils the objectives for
which it was designed. Similarly to most large software projects, there is always
room for improvement, but it can be safely assumed that SCARS can prove itself
to be an useful tool for both unexperienced student teams and for control systems
engineers searching for a way to quickly design a prototype model.
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Appendices

A Example STK Ephemeris File

stk.v.4.3

BEGIN Ephemeris

NumberOfEphemerisPoints 1201

ScenarioEpoch 1 Jan 2000 12:0:0.0000

InterpolationOrder 5

DistanceUnit Meters

CentralBody Earth

CoordinateSystem Fixed

EphemerisTimePosVel

0 1229340.480 6658465.510 -182.453 -6604.570 1219.461 2623.985

0.1 1228680.016 6658587.418 79.945 -6604.710 1218.705 2623.985

0.2 1228019.538 6658709.251 342.343 -6604.849 1217.949 2623.985

0.3 1227359.046 6658831.008 604.742 -6604.989 1217.192 2623.985

0.4 1226698.540 6658952.689 867.140 -6605.128 1216.436 2623.985

0.5 1226038.020 6659074.295 1129.539 -6605.267 1215.680 2623.985

0.6 1225377.486 6659195.825 1391.937 -6605.407 1214.923 2623.984

0.7 1224716.939 6659317.280 1654.336 -6605.546 1214.167 2623.984

0.8 1224056.377 6659438.659 1916.734 -6605.685 1213.411 2623.984

0.9 1223395.802 6659559.962 2179.133 -6605.824 1212.654 2623.984

1 1222735.212 6659681.190 2441.531 -6605.963 1211.898 2623.983

1.1 1222074.609 6659802.342 2703.930 -6606.102 1211.141 2623.983

1.2 1221413.992 6659923.418 2966.328 -6606.240 1210.385 2623.983

1.3 1220753.361 6660044.419 3228.726 -6606.379 1209.628 2623.982

1.4 1220092.716 6660165.344 3491.124 -6606.518 1208.872 2623.982

1.5 1219432.057 6660286.193 3753.523 -6606.656 1208.115 2623.981

1.6 1218771.385 6660406.967 4015.921 -6606.795 1207.359 2623.981

1.7 1218110.698 6660527.665 4278.319 -6606.933 1206.602 2623.980

1.8 1217449.998 6660648.288 4540.717 -6607.072 1205.846 2623.980

1.9 1216789.284 6660768.835 4803.115 -6607.210 1205.089 2623.979

2 1216128.556 6660889.306 5065.513 -6607.348 1204.333 2623.978

2.1 1215467.814 6661009.701 5327.911 -6607.486 1203.576 2623.978

2.2 1214807.059 6661130.021 5590.308 -6607.624 1202.820 2623.977

2.3 1214146.289 6661250.265 5852.706 -6607.762 1202.063 2623.976

2.4 1213485.506 6661370.434 6115.104 -6607.900 1201.306 2623.976

...
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B Example STK Attitude File

stk.v.4.3

BEGIN Attitude

NumberOfAttitudePoints 1201

ScenarioEpoch 1 Jan 2000 12:0:0.0000

InterpolationOrder 5

CentralBody Earth

CoordinateSystem Fixed

AttitudeTimeEulerAngles

0 -6.3611e-15 5.0193e-15 -2.8123e-15

0.1 1.466e-06 3.9918e-06 0.075

0.2 5.8778e-06 1.5962e-05 0.15

0.3 1.3256e-05 3.5903e-05 0.225

0.4 2.3623e-05 6.3808e-05 0.3

0.5 3.6997e-05 9.9667e-05 0.375

0.6 5.3401e-05 0.00014347 0.45

0.7 7.2855e-05 0.00019522 0.52501

0.8 9.538e-05 0.0002549 0.60001

0.9 0.000121 0.0003225 0.67501

1 0.00014973 0.00039802 0.75001

1.1 0.00018159 0.00048144 0.82501

1.2 0.0002166 0.00057277 0.90002

1.3 0.0002548 0.00067198 0.97502

1.4 0.00029618 0.00077908 1.05

1.5 0.00034079 0.00089406 1.125

1.6 0.00038862 0.0010169 1.2

1.7 0.00043972 0.0011476 1.275

1.8 0.0004941 0.0012861 1.35

1.9 0.00055177 0.0014325 1.425

2 0.00061276 0.0015868 1.5

2.1 0.0006771 0.0017488 1.5751

2.2 0.00074479 0.0019187 1.6501

2.3 0.00081587 0.0020964 1.7251

2.4 0.00089034 0.0022818 1.8001

...
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C Model Linearization with Control System Tool-

box

This appendix contains the step-by-step instructions to linearize the chosen SCARS
model. In the case of this example, the aim is to acquire linear model of satellite
with added actuators, to use it for control system design. The relevant block in
this SCARS model are Satellite Dynamics as a core of simulation, one Re-
action Wheel (1-axis, X/Y/Z) for each major axis. Figure C.1 presents the
whole model used in this example.

Figure C.1: Satellite model built with SCARS for purposes of linearization presentation

Step 1: Create output signals

To linearize the SCARS model one has to determine inputs and outputs which
will be represented by the acquired linearized model. While the model inputs are
same as the actuators blocks inputs (or Demux outputs), the outputs have to be
extracted from SatStates bus. To do that, the user has to add Bus Selector
block and choose, in case of this example, Euler B signal, as seen on Figure C.2.
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It has to be noted that if any controller is set up to provide input signal, like PID
Controller in this example, it has to be commented out from the model before
linearization.

Figure C.2: Extraction of output signal from bus port

Step 2: Select input and output signals

Once all signals are available in the model, it is necessary to properly mark them
for Simulink Linear Analysis Tool. To do that, the user has to open Linearization
Manager from Apps tab in Simulink model editor. Then, a signal has to be chosen
and in Linearization tab a correct type of signal has to be applied. In case of input
it has to be Open-loop Input, as seen on Figure C.3 (a), and in case of output it
has to be Open-loop Output, as seen on Figure C.3 (b). Small arrow icons over
the signal route show that the I/O ports are properly set up.
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(a) Open loop input setup

(b) Open loop output setup

Figure C.3: Step 2: Open loop I/O setup
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Step 3: Trim the model

After setting up the model I/O signals, the user can open Linear Analysis Tool by
choosing Model Linearizer from either Apps or Linearization tabs. Once loaded,
the initial conditions have to be set up for the linearization process. To do that, the
user can trim the model by choosing Trim Model... from Model Initial Condition
in Setup section of Linear Analysis tab.

For this example, the only checkboxes that need to be marked in opened dia-
log are Steady State for all three states of both Satellite Dynamics/6DOF ECEF

(Quaternion)/p,q,r and Satellite Dynamics/Euler_B, as can be seen on Fig-
ure C.4. After that the user has to click the Start trimming button.

Figure C.4: Model trimming

Step 4: Linearization of the model

Once the model has been trimmed the initial conditions are automatically set.
Then, the user can launch linearization process from Linearize section of Linear
Analysis tab, by choosing any plot or option there. This should result in a plot (if
chosen) and linearized model available in Linear Analysis Workspace, under the
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name linsys1 or similar. The user can then move it it MATLAB Workspace and
use it for various purposes, such as control system design as presented in example
in Section 4.4.1.

Figure C.5: Linear Analysis Tool window after successful linearization
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